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LETTER TO THE EDITOR 

Absorption of a self-avoiding random walker by a random 
trap distribution 

F Tanaka 
Laboratory of Physics, Faculty of General Education, Tokyo University of Agriculture 
and Technology, Fuchu-shi, Tokyo 183, Japan 

Received 5 July 1983 

Abstract. A particle performing a self-avoiding random walk is considered on a lattice in 
any number of dimensions d ,  which contains a fraction q of randomly distributed impurity 
sites. An impurity is assumed to trap the walker when stepped on. We find the average 
time to trapping to be y(l-q)/[q-(l-&)],  where K, and y are the inverse critical 
temperature and the critical index of the susceptibility for the classical Heisenberg model 
of magnetism with vanishing ( n  + Q )  internal degrees of freedom. 

The average trapping time and probability distribution of trapping time have been 
studied by Hemenger et a1 (1972), Rosenstock (1980) and Rosenstock and Straley 
(1981) for a random walk on a d-dimensional lattice containing a random distribution 
of traps. A random walker was assumed to step on one of the nearest neighbours 
with equal probability after a specified time interval. Though the problem originated 
in the mathematical theory of probability, such as the classical gambler's ruin problem 
(Feller 1957), it is expected to have applications to many physical systems. A par- 
ticularly important one is an organic crystal in which the quenching of migratory 
excited states of molecular aggregates takes place (Rosenstock 1969, Birks 1970, 
Hemenger er a1 1972). 

We study in this paper the case where a particle performs a random walk of the 
same kind as mentioned above but with an additional constraint that it can never visit 
the lattice sites which have already been stepped on. The walk is called a self-avoiding 
random walk (SAW). According to a general formula found by Rosenstock (1980), 
the average time to trapping is given by l / q  where q is the fraction of randomly 
distributed trapping sites, since V(m), the number of distinct sites that would be 
visited in m steps if there were no traps, is nothing but m for such a SAW. The result 
is obviously erroneous since it contains no information on the type of the 1,attice or 
even the space dimensions. We derive a better estimate by applying the theorem 
found by de Gennes (1972) which established an isomorphic relationship between a 
SAW on a lattice and the spin correlation function for the ferromagnetic model with 
vanishing internal degrees of freedom. 

Let us associate the ith lattice site with a variable vi which takes the value 1 if the 
site i is normal and 0 if it is an impurity site. The number of SAW paths which start 
at a normal site i and are trapped by the impurity site j after exactly m steps is given 
by 

Z,,,(i, j ;  {v}) = 1 vivilviP . . . v i m - l ( ~  -vi) (1) 
i l . i 2  ..... i , - l  
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for a fixed impurity distribution {v}, where the summation is taken over all possible 
paths of intermediate m - 1 lattice sites which forms a chain of SAW. The total number 
of SAW paths which start at the ith site and are quenched at any one of the trapping 
centres after m steps is then given by 

Qm(i; {v}) = C zm(i, i; {VI). (2) 
i 

The average trap time can be expressed as 

where [. . .IaV denotes the average over possible distribution of impurities. The result 
is independent of the starting site i. 

Our analysis will be based on the following fundamental theorem on the generating 
function of 2, ; 

In this theorem G(i, j ;  {v}) is a spin correlation function 

G(i, j;{u})=lim n-’(S, . S i )  ( 5 )  
n -0 

for the dilute ferromagnetic Heisenberg Hamiltonian 

%’= -J V i V j S i  Sj (6 )  
(i.i) 

where Si is a classical n-component spin vector with constraints S: = n. The parameter 
K is related to the exchange integral through K = /3J (p being the inverse temperature 
of the magnetic system). The theorem (4) can be easily derived by high-temperature 
series expansion in a quite similar way to the one for the pure case (de Gennes 1972, 
Emery 1975, Daoud et a1 1975). The problem is therefore reduced to finding the 
spin correlation function (or the susceptibility) of a dilute ferromagnetism with vanish- 
ing internal degrees of freedom. 

Unfortunately no exact results have been obtained for such a disordered system. 
We therefore introduce a simple approximation by which we take the impurity average 
of the numerator and the denominator separately in (3). We have 

Within this approximation our result is exact. Since the impurities are assumed to be 
randomly and independently distributed, we find 

[Qm(i; {v})lav=C [zm( i , j ;  { ~ } ) l a v = p ~ q  xZK)(i,j) 
i i 

where p = 1 - q and 2:’ (i, j )  is the number of m-step SAW paths from i to j on a pure 
lattice. The generating function for 2:) is the spin correlation function for the pure 
Hamiltonian ; 
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Hence we have 

where ,y("(K) is the susceptibility of the 0-component pure magnetic system. Sub- 
stituting (8) into (7) we find 

( m ) - - x  m p " ' Q ~ ' / ~  pmQ',"' = p (  =log a x'O'(K)) . 
m m K = p  

For K smaller than K,, the inverse critical temperature of the second-order phase 
transition point of the n +O Heisenberg model, it is well known that the high- 
temperature series expansion (10) converges to give a dominant singularity 

X(O)(K) = Xo(K, -K)- (12) 

of the magnetic susceptibility characterised by a critical index y, where xo is a finite 
amplitude. This singular form leads to the final result 

(13) h>= yp l ( -p  +Kc) = r ( l -4) / [4  - U  -Kc)]. 

qc 1 - K,, (14) 

For the impurity concentration q larger than the critical value qc defined by 

the average trapping time is finite and is given by (13). For q less than q,, however, 
this time becomes infinite since the high-temperature series (10) diverges. SAW paths 
are infinitely extended on average for such a dilute limit of impurity concentration. 

The coefficients Qff' have been extensively enumerated for SAW'S on finite lattices. 
They are well known to be precisely fitted by the asymptotic form 

for large m. (15) QE) - K ; m m Y - l  

By expanding (12) in powers of K, one can easily be convinced that K, and y of this 
asymptotic form are identical to those parameters which appeared in (12). Watts 
(1975) carefully estimated them by applying the method of Pad6 approximants. His 
results are summarised in table 1. On the other hand, study of the critical phenomena 
of the n +O spin model gives another estimate of them. Unfortunately the precise 
value of the critical temperature has not been available so far but the renormalisation 
group theory (Le Guillou and Zinn-Justin 1980) predicts the three-dimensional y as 

y =  1.1615*0.0020. (16) 
y is believed to be independent of the lattice structure. 

Table 1. The critical temperature and the susceptibility index for various lattices in two 
and three dimensions. H (honeycomb), T (triangular), SQ (square), D (diamond), SC (simple 
cubic), BCC (body centred cubic), FCC (face centred cubic) and MF (molecular-field theory) 
( z  being the number of the nearest neighbours). 

Lattice H T SO D sc BCC FCC M F  

KC 0.541 0.379 0.241 0.347 0.214 0.153 0.100 l/z 
Y 1.342 1.335 1.330 1.157 1.162 1.165 1.166 1 
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Contrary to the conclusion obtained by Rosenstock (1980) for free random walks 
our result gives a finite critical fraction of the trapping centres at which the trapping 
time diverges. 
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